電渦流式傳感器的工作原理:電渦流傳感器

2022/01/12 17:07 · 傳感器知識資訊 ·  · 電渦流式傳感器的工作原理:電渦流傳感器已關閉評論
摘要:

電渦流式傳感器的工作原理:電渦流傳感器收藏查看我的收藏0有用+1已投票0電渦流傳感器語音編輯鎖定討論上傳視頻上傳視頻本詞條由“科普中國”科學百科詞條編寫與應用工作項目審核。電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸

電渦流式傳感器的工作原理:電渦流傳感器

收藏
查看我的收藏
0
有用+1
已投票
0
電渦流傳感器
語音
編輯
鎖定
討論
上傳視頻
上傳視頻
本詞條由“科普中國”科學百科詞條編寫與應用工作項目
審核
。
電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸的線性化計量工具。電渦流傳感器能準確測量被測體(必須是金屬導體)與探頭端面之間靜態和動態的相對位移變化。電渦流傳感器的原理是,通過電渦流效應的原理,準確測量被測體(必須是金屬導體)與探頭端面的相對位置,其特點是長期工作可靠性好、靈敏度高、抗干擾能力強、非接觸測量、響應速度快、不受油水等介質的影響,常被用于對大型旋轉機械的軸位移、軸振動、軸轉速等參數進行長期實時監測,可以分析出設備的工作狀況和故障原因,有效地對設備進行保護及預維修。
中文名
電渦流傳感器
外文名
Electric eddy current sensor
簡 介
在高速旋轉機械和往復
原 理
根據法拉第電磁感應原
過 程
當被測金屬與探頭之間的
目錄
1
簡介
2
原理
3
過程
4
典型應用
5
特殊定制系列
?
技術指標
?
鎧裝選擇
?
選型示例
6
HZ-891應用
?
振動測量
?
轉速測量
?
動態監控
7
類型
8
安裝
9
影響
10
要求
電渦流傳感器簡介
編輯
語音
傳感器經常作為自動化產品的一部分,在我們日常生產生活中扮演著重要角色。它是現代科技的前沿技術,其水平高低也是衡量一個國家科技發展水平的重要標志之一。市面上的傳感器多種多樣,玲瑯滿目,可供我們選擇的有很多。電感渦流傳感器等眾多高性能傳感器,被大量應用在各行各業。特別是機床行業,以及汽車制造等行業更是應用廣泛,是國內外公認的具有發展前途的高技術產業。在高速旋轉機械和往復式運動機械的狀態分析,振動研究、分析測量中,對非接觸的高精度振動、位移信號,能連續準確地采集到轉子振動狀態的多種參數。如軸的徑向振動、振幅以及軸向位置。從轉子動力學、軸承學的理論上分析,大型旋轉機械的運動狀態,主要取決于其核心—轉軸,而電渦流傳感器,能直接非接觸測量轉軸的狀態,對諸如轉子的不平衡、不對中、軸承磨損、軸裂紋及發生摩擦等機械問題的早期判定,可提供關鍵的信息。電渦流傳感器以其長期工作可靠性好、測量范圍寬、靈敏度高、分辨率高、響應速度快、抗干擾力強、不受油污等介質的影響、結構簡單等優點,在大型旋轉機械狀態的在線監測與故障診斷中得到廣泛應用
[1]
。
電渦流傳感器原理
編輯
語音
根據法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內將產生呈渦旋狀的感應電流,此電流叫電渦流,以上現象稱為電渦流效應。而根據電渦流效應制成的傳感器稱為電渦流式傳感器。
前置器中高頻振蕩電流通過延伸電纜流入探頭線圈,在探頭頭部的線圈中產生交變的磁場。當被測金屬體靠近這一磁場,則在此金屬表面產生感應電流,與此同時該電渦流場也產生一個方向與頭部線圈方向相反的交變磁場,由于其反作用,使頭部線圈高頻電流的幅度和相位得到改變(線圈的有效阻抗),這一變化與金屬體磁導率、電導率、線圈的幾何形狀、幾何尺寸、電流頻率以及頭部線圈到金屬導體表面的距離等參數有關。通常假定金屬導體材質均勻且性能是線性和各項同性,則線圈和金屬導體系統的物理性質可由金屬導體的電導率б、磁導率ξ、尺寸因子τ、頭部體線圈與金屬導體表面的距離D、電流強度I和頻率ω參數來描述。則線圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函數來表示。通常我們能做到控制τ, ξ, б, I, ω這幾個參數在一定范圍內不變,則線圈的特征阻抗Z就成為距離D的單值函數,雖然它整個函數是一非線性的,其函數特征為“S”型曲線,但可以選取它近似為線性的一段。于此,通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離D的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。
電渦流傳感器過程
編輯
語音
當被測金屬與探頭之間的距離發生變化時,探頭中線圈的Q值也發生變化,Q值的變化引起振蕩電壓幅度的變化,而這個隨距離變化的振蕩電壓經過檢波、濾波、線性補償、放大歸一處理轉化成電壓(電流)變化,最終完成機械位移(間隙)轉換成電壓(電流)。由上所述,電渦流傳感器工作系統中被測體可看作傳感器系統的一半,即一個電渦流位移傳感器的性能與被測體有關。按照電渦流在導體內的貫穿情況,此傳感器可分為高頻反射式和低頻透射式兩類,但從基本工作原理上來說仍是相似的。電渦流式傳感器最大的特點是能對位移、厚度、表面溫度、速度、 應力、材料損傷等進行非接觸式連續測量,另外還具有體積小,靈敏度高,頻率響應寬等特點,應用極其廣泛
[2]
。
電渦流傳感器典型應用
編輯
語音
圖1-1
電渦流傳感器系統以其獨特的優點,廣泛應用于電力、石油、化工、冶金等行業,對汽輪機、水輪機、發電機、鼓風機、壓縮機、齒輪箱等大型旋轉機械的軸的徑向振動、軸向位移、鑒相器、軸轉速、脹差、偏心、油膜厚度等進行在線測量和安全保護,以及轉子動力學研究和零件尺寸檢驗等方面。圖1-1列舉了電渦流傳感器的一些典型應用示意。前置器根據探頭線圈阻抗的變化輸出一個與距離成正比的直流電壓。
電渦流傳感器特殊定制系列
編輯
語音
系列號形式量程工作溫度前置器安裝方式
HZ-891XL分體 (探頭+前置器)0-25mm(可擴量程)-50℃~ +175°C底板安裝和導軌安裝
HZ-891分體 (探頭+前置器)0-25mm(可擴量程)-50℃~ +175°C底板安裝
HZ-891YT一體化 (前置器電路集成在探頭殼體內)0-25mm(可擴量程)-25℃~+85℃無前置器
特殊定制系列分體、一體化均可可定制根據產品結構適用工作溫度不同//
電渦流傳感器技術指標
1、線性量程、線性范圍、線性中點、非線性誤差、最小被測面探頭直徑線性量程(mm)線性范圍(mm)線性中點(mm)非線性誤差最小被測面(mm)φ510.25~1.250.75±1%φ15φ820.50~2.501.5±1%φ20φ1141.0~5.03.0±1%φ30φ.5~13.57.5±1.5%φ50φ.5~27.515±2%φ100※ 非線性誤差指實際輸出值與理論值(按標準特性方程計算)最大誤值。2、平均靈敏度(線性范圍內輸出變化除線性范圍)探頭直徑 輸出φ5φ8φ11φ25φ50負電壓8V/mm8V/mm4V/mm0.8V/mm0.4V/mm4~20mA16mA/mm8mA/mm4mA/mm1.33mA/mm0.64mA/mm平均靈敏度誤差:≤±5%3、動態特性頻響:0~10kHz幅頻特性:0~1kHz衰減小于1%,10kHz衰減小于5%相頻特性:0~1kHz相位差小于-10°,10kHz相位差小于-100°4、互換性誤差≤5%5、工作溫度探頭:工作溫度-50~ +175°C 溫漂≤0.05%/°C前置器:工作溫度-50~ +120°C 溫漂≤0.05%/°C6、工作介質:空氣、油、水。7、探頭最大工作壓力:12MpaA、探頭直徑選擇探頭直徑量程頭部長度φ5 0 51mm5mmφ8 0 82mm5mmφ11 1 14mm11mmφ25 2 512mm23mmφ50 5 025mm37mmB、螺紋規格選擇探頭直徑公制螺紋英制螺紋φ5M8×11/4-28φ8M10×13/8-24φ11M14×1.51/2-20φ25M30×21.25-12φ50M14×1.51/2-20D 無螺紋長選擇以10mm為單位最小無螺紋長0mm 0 0,最大無螺紋長250mm 2 5,遞增量10mm 0 1探頭的無螺紋部分是為了方便安裝:采用螺孔安裝時,適當長度的無螺紋部分可以減少需要旋入螺孔的長度。E 殼體長度選擇以10mm為單位最小殼體長度20mm 0 2 ,最大殼體長度250mm 2 5 ,遞增量10mm 0 1探頭殼體長度取決于安裝位置與被測面的距離。F 電纜長度選擇0 5 0.5m 5 0 5.0m1 0 1.0m 9 0 9.0m電纜長度選擇應考慮被測面與前置器安裝位置之間的距離。采用螺孔安裝時,建議選擇05(0.5m)、10(1.0m),易于保證旋動探頭時,探頭電纜與探頭能一起轉動,不易扭斷電纜,而且需選用延伸電纜,延伸電纜長度與探頭總長之和為5m或9m。在機器內部安裝探頭,選擇探頭總長應保證電纜接頭能處于機器外部,以防機器內部的機油污染接頭
[3]
。
電渦流傳感器鎧裝選擇
“K”表示電纜帶鎧裝,無“K”表示電纜不帶鎧裝如果探頭電纜無管道保護,建議選擇鎧裝探頭,以使探頭電纜不易被損壞。
電渦流傳感器選型示例
例1:HZ-891XLT08-M10×1-B-01-05-50(分體式:含前置器,電纜,探頭)表示:HZ-891XL系列電渦流傳感器,探頭直徑φ8、殼體螺紋M10×1、標準安裝方式、無螺紋長10mm、殼體長度50mm、電纜長度5m、不帶鎧裝。例2:HZ-891YT08HP-M10×1-B-01-05-50(一體化式內置前置器功能)表示:HZ-891XL系列一體化電渦流傳感器,探頭直徑φ8、殼體螺紋M10×1、標準安裝方式、無螺紋長10mm、殼體長度50mm、電纜長度5m、不帶鎧。
電渦流傳感器HZ-891應用
編輯
語音
電渦流傳感器系統廣泛應用于電力、石油、化工、冶金等行業和一些科研單位。對汽輪機、水輪機、鼓風機、壓縮機、空分機、齒輪箱、大型冷卻泵等大型旋轉機械軸的徑向振動、軸向位移、鍵相器、軸轉速、脹差、偏心、以及轉子動力學研究和零件尺寸檢驗等進行在線測量和保護。脹差測量斜坡式脹差測量補償式脹差測量振動測量軸位移測量軸心軌跡測量差動測量動力膨脹轉子動平徑向運動分析轉速和相位差測試轉速測量表面不平整度測量裂痕測量非導電材料厚度測量金屬元件合格檢測軸承測量換向片測量
電渦流傳感器振動測量
測量徑向振動,可以由它分析軸承的工作狀態,還可以看到分析轉子的不平衡,不對中等機械故障。電渦流傳感器系統可以提供對于下列關鍵或是基礎機械狀態監測所需要的信息:●工業透平,蒸汽/燃氣 ●壓縮機,徑向/軸向●膨脹機 ●動力發電透平,蒸汽/燃氣/水利●發動馬達 ●發動機●勵磁機 ●齒輪箱●泵 ●風箱●鼓風機 ●往復式機械(1)相對振動測量(小型機械)振動測量同樣可以用于對一般性的小型機械進行連續監測。電渦流傳感器系統可為如下各種機械故障的早期判別提供重要信息:●軸的同步振動 ●油膜失穩●轉子摩擦 ●部件松動●軸承套筒松動 ●壓縮機踹振●滾動部件軸承失效 ●徑向預載,內部/外部包括不對中●軸承巴氏合金磨損 ●軸承間隙過大,徑向/軸向●平衡(阻氣)活塞 ●聯軸器“鎖死”磨損/失效●軸裂紋 ●軸彎曲●齒輪咬合問題 ●電動馬達空氣間隙不勻●葉輪通過現象 ●透平葉片通道共振(2)偏心測量偏心是在低轉速的情況下,電渦流傳感器系統可對軸彎曲的程度進行測量,這些彎曲可由下列情況引起:●原有的機械彎曲 ●臨時溫升導致的彎曲●重力彎曲 ●外力造成的彎曲偏心的測量,對于評價旋轉機械全面的機械狀態,是非常重要的。特別是對于裝有透平監測儀表系統(TSI)的汽輪機,在啟動或停機過程中,偏心測量已成為不可少的測量項目。它使你能看到由于受熱或重力所引起的軸彎曲的幅度。轉子的偏心位置,也叫軸的徑向位置,它經常用來指示軸承的磨損,以及加載荷的大小。如由不對中導致的那種情況,它同時也用來決定軸的方位角,方位角可以說明轉子是否穩定。(3)脹差測量對于汽輪發電機組來說,在其啟動和停機時,由于金屬材料的不同,熱膨脹系數的不同,以及散熱的不同,軸的熱膨脹可能超過殼體膨脹;有可能導致透平機的旋轉部件和靜止部件(如機殼、噴嘴、臺座等)的相互接觸,導致機器的破壞。因此脹差的測量是非常重要的。
電渦流傳感器轉速測量
對于所有旋轉機械而言,都需要監測旋轉機械軸的轉速,轉速是衡量機器正常運轉的一個重要指標。旋轉測量通常有以下幾種傳感器可選:電渦流轉速傳感器、無源磁電轉速傳感器、有源磁電轉速傳感器等。具有需要選擇那類傳感器,則要根據轉速測量的要求轉速等,轉速發生裝置有以下幾種:用標準的漸開的線齒數(M1~M5)作轉速發生信號,在轉軸上開一鍵槽、在轉軸在轉軸上開孔眼、在軸轉上凸鍵等轉速發生信號裝置。無源磁電式傳感器是針對測齒輪而設計的發電型傳感器(無源),不適合測零轉速和較低轉速,因低頻時,幅值信號小,抗干擾能力差,它不需要供電。有源磁電式傳感器采用了電源供電,輸出波形為矩形波,具有負載驅動能力,適合測量 0.03HZ以上轉速信號。而電渦流傳感器測量轉速的優越性是其它任何傳感器測量沒法比的,它既能響應零轉速,也能響應高轉速。對于被測體轉軸的轉速發生裝置要求也很低,被測體齒輪數可以很小,被測體也可以是一個很小的孔眼,一個凸鍵,一個小的凹鍵。電渦流傳感器測轉速,通常選用φ3mm、φ4mm、φ5mm、φ8mm、φ10mm的探頭。轉速測量頻響為0~10KHZ。電渦流傳感器測轉速,傳感器輸出的信號幅值較高(在低速和高速整個范圍內)抗干擾能力強。作轉速測量的電渦流傳感器有一體化和分體兩種。一體化電渦流轉速傳感器取消前置器放大器、安裝方便、適用于工作溫度在–20℃~100℃的環境下,帶前置器放大器的電渦流傳感器適合在–50℃~250℃的工作環境中。
電渦流傳感器動態監控
對使用滾動軸承的機器預測性維修很重要。探頭安裝在軸承外殼中,以便觀察軸承外環。由于滾動元件在軸承旋轉時,滾動元件與軸承有缺陷的地方相碰撞時,外環會產生微小變形。監測系統可以監測到這種變形信號,當信號變形時意味著發生了故障,如滾動元件的裂紋缺陷或者軸承環的缺陷等,還可以測量軸承內環運行狀態,經過運算可以測量軸承打滑度
[3]
。
電渦流傳感器類型
編輯
語音
分為高頻反射式電渦流傳感器和低頻透射式電渦流傳感器。激勵頻率的選擇原則為:待測導體的厚度大,應選擇較低的激勵頻率以保證線性度,反之則使用較高激勵頻率以提高靈敏度。
電渦流傳感器安裝
編輯
語音
軸的徑向振動測量當需要測量軸的徑向振動時,要求軸的直徑大于探頭直徑的三倍以上。每個測點應同時安裝兩個傳感器探頭,兩個探頭應分別安裝在軸承兩邊的同一平面上相隔90o±5o。由于軸承蓋一般是水平分割的,因此通常將兩個探頭分別安裝在垂直中心線每一側45o,從原動機端看,分別定義為X探頭(水平方向)和Y探頭(垂直方向),X方向在垂直中心線的右側,Y方向在垂直中心線的左側。軸的徑向振動測量時探頭的安裝位置應該盡量靠近軸承,如圖所示,否則由于軸的撓度,得到的值會有偏差。軸的徑向振動探頭安裝位置與軸承的最大距離。軸的徑向振動測量時探頭的安裝:測量軸承直徑 最大距離0~76mm 25mm76~510mm 76mm大于520mm 160mm探頭中心線應與軸心線正交,探頭監測的表面(正對探頭中心線的兩邊1.5倍探頭直徑寬度的軸的整個圓周面,如圖)應無裂痕或其它任何不連續的表面現象(如鍵槽、凸凹不平、油孔等),且在這個范圍內不能有噴鍍金屬或電鍍,其表面的粗糟度應在0.4 um至0.8um之間。軸的軸向位移測量測量軸的軸向位移時,測量面應該與軸是一個整體,這個測量面是以探頭的中心線為中心,寬度為1.5倍的探頭圓環。探頭安裝距離距止推法蘭盤不應超過305mm,否則測量結果不僅包含軸向位移的變化,而且包含脹差在內的變化,這樣測量的不是軸的真實位移值。鍵相測量鍵相測量就是通過在被測軸上設置一個凹槽或凸鍵,稱鍵相標記。當這個凹槽或凸鍵轉到探頭位置時,相當于探頭與被測面間距突變,傳感器會產生一個脈沖信號,軸每轉一圈,就會產生一個脈沖信號,產生的時刻表明了軸在每轉周期中的位置。因此通過對脈沖計數,可以測量軸的轉速;通過將脈沖與軸的振動信號比較,可以確定振動的相位角,用于軸的動平衡分析以及設備的故障分析與診斷等方面。凹槽或凸鍵要足夠大,以使產生的脈沖信號峰峰值不小于5V。一般若采用φ5、φ8探頭,則這一凹槽或凸鍵寬度應大于7.6mm、深度或高度應大于1.5mm(推薦采用2.5mm以上)、長度應大于0.2mm。凹槽或凸鍵應平行于軸中心線,其長度盡量長,以防當軸產生軸向竄動時,探頭還能對著凹槽或凸鍵。為了避免由于軸相位移引起的探頭與被測面之間的間隙變化過大,應將鍵相探頭安裝在軸的徑向,而不是軸向的位置。應盡可能地將鍵相探頭安裝在機組的驅動部分上,這樣即使機組的驅動部分與載荷脫離,傳感器仍會有鍵相信號輸出。當機組具有不同的轉速時通常需要有多套鍵相傳感器探頭對其進行監測,從而可以為機組的各部分提供有效的鍵相信號。鍵相標記可以是凹槽,也可以是凸鍵,如圖所示,標準要求用凹槽的形式。當標記是凹槽時,安裝探頭要對著軸的完整部分調整初始安裝間隙(安裝在傳感器的線性中點為宜),而不是對著凹槽來調整初始安裝間隙。而當標記是凸鍵時探頭一定要對著凸起的頂部表面調整初始安裝間隙(安裝在傳感器的線性中點為宜),不是對著軸的其它完整表面進行調整。否則當軸轉動時,可能會造成凸鍵與探頭碰撞,剪斷探頭
[3]
。
電渦流傳感器影響
編輯
語音
被測體材料對傳感器的影響傳感器特性與被測體的電導率б、磁導率ξ有關,當被測體為導磁材料(如普通鋼、結構鋼等)時,由于渦流效應和磁效應同時存在,磁效應反作用于渦流效應,使得渦流效應減弱,即傳感器的靈敏度降低。而當被測體為弱導磁材料(如銅,鋁,合金鋼等)時,由于磁效應弱,相對來說渦流效應要強,因此傳感器感應靈敏度要高。被測體表面平整度對傳感器的影響不規則的被測體表面,會給實際的測量帶來附加誤差,因此對被測體表面應該平整光滑,不應存在凸起、洞眼、刻痕、凹槽等缺陷。一般要求,對于振動測量的被測表面粗糙度要求在0.4um~0.8um之間;對于位移測量被測表面粗糙度要求在0.4um~1.6um之間。被測體表面磁效應對傳感器的影響電渦流效應主要集中在被測體表面,如果由于加工過程中形成殘磁效應,以及淬火不均勻、硬度不均勻、金相組織不均勻、結晶結構不均勻等都會影響傳感器特性。在進行振動測量時,如果被測體表面殘磁效應過大,會出現測量波形發生畸變。被測體表面鍍層對傳感器的影響被測體表面的鍍層對傳感器的影響相當于改變了被測體材料,視其鍍層的材質、厚薄,傳感器的靈敏度會略有變化。被測體表面尺寸對傳感器的影響由于探頭線圈產生的磁場范圍是一定的,而被測體表面形成的渦流場也是一定的。這樣就對被測體表面大小有一定要求。通常,當被測體表面為平面時,以正對探頭中心線的點為中心,被測面直徑應大于探頭頭部直徑的1.5倍以上;當被測體為圓軸且探頭中心線與軸心線正交時,一般要求被測軸直徑為探頭頭部直徑的3倍以上,否則傳感器的靈敏度會下降,被測體表面越小,靈敏度下降越多。實驗測試,當被測體表面大小與探頭頭部直徑相同,其靈敏度會下降到72%左右。被測體的厚度也會影響測量結果。被測體中電渦流場作用的深度由頻率、材料導電率、導磁率決定。因此如果被測體太薄,將會造成電渦流作用不夠,使傳感器靈敏度下降,一般要求厚度大于0.1mm以上的鋼等導磁材料及厚度大于0.05mm以上的銅、鋁等弱導磁材料,則靈敏度不會受其厚度的影響
[2]
。
電渦流傳感器要求
編輯
語音
對被測體的要求為了防止電渦流產生的磁場影響儀器的正常輸出安裝時傳感器頭部四周必須留有一定范圍的非導電介質空間,如果在某一部位要同時安裝兩個以上的傳感器,就必須考慮是否會產生交叉干擾,兩個探頭之間一定要保持規定的距離,被測體表面積應為探頭直徑3倍以上,當無法滿足3倍的要求時,可以適當減小,但這是以犧牲靈敏度為代價的,一般是探頭直徑等于被測體表面積時,靈敏度降低至70%,所以當靈敏度要求不高時可適當縮小測量表面積。對工作的溫度的要求一般進口渦流傳感器最高溫度不大于180℃,而國產的只能達到120℃,并且這些數據來源于生產廠家,其中有很大的不可靠性,據相關的各種資料分析,實際上,工作溫度超過70℃時,電渦流傳感器的靈敏度會顯著降低,甚至會造成傳感器的損壞,在核電站工業、渦輪發動機制造、火箭發射、汽車發動機檢驗、冶金鋼鐵熔爐等領域必要耐高溫的電渦流傳感器耐受性必須很高,據悉英國真尚有集團電渦流傳感器設計工程師成功研發出了能夠耐受上千攝氏度的此類傳感器。電渦流傳感器的靈敏度受溫度的影響,在軸振測量中安裝使用電渦流傳感器應盡量遠離汽封,只有特制的耐高溫傳感器如高低溫電渦流傳感器才能用于安裝汽封附近。對探頭支架的要求電渦流傳感器安裝在固定支架上,因此支架的好壞直接決定測量的效果,這就要求支架應有足夠的剛度以提高自振頻率,避免或減小被測體振動時支架也同時受激自振,資料表明,支架的自振頻率至少應為機械旋轉速度的10倍,支架應與被測表面切線方向平行,傳感器垂直安裝在支架上,雖然探頭的中心線在垂直方向偏15°角時對系統特性沒有影響,但最好還是保證傳感器與被測面垂直。對初始間隙的要求各種型號電渦流傳感器,都在一定的間隙電壓值下,它的讀數才有較好的線性度,所以在安裝傳感器時必須調整好合適的初始間隙,對每一套產品都會進行特性試驗,繪出相應的特性曲線,工程技術人員在使用傳感器的時候必須仔細研究配套的校驗證書,認真分析特性曲線,以確定傳感器是否滿足所要測量的間隙,一般傳感器直徑越大所測量間隙也越大
[1]
。
詞條圖冊
更多圖冊
解讀詞條背后的知識
雷達液位計
淮安嘉可自動化儀表官方帳號,旅游領域愛好者
電渦流傳感器的原理及其測試系統的構成
電渦流傳感器系統屬于非接觸式測量系統,目前在機械、電力以及石油化工等諸多領域廣泛應用。其特點是靈敏度高、動態性能好,且易于自動采集數據。1、電渦流傳感器的工作原理如圖1所示,根據電磁感應原理,當金屬線圈中通過交變電流時會產生交變磁場。反之,金屬處在交變磁場時,亦會在金屬體內...
2021-06-281
閱讀96
參考資料
1.

丁天懷, 陳祥林. 電渦流傳感器陣列測試技術[J]. 測試技術學報, 2006, 20(1):1-5.
2.

凌保明, 諸葛向彬, 凌云. 電渦流傳感器的溫度穩定性研究[J]. 儀器儀表學報, 1994(4):342-346.
3.

譚祖根, 陳守川. 電渦流傳感器的基本原理分析與參數選擇[J]. 儀器儀表學報, 1980(1):116-125.
電渦流式傳感器的工作原理:電渦流傳感器  第1張

電渦流式傳感器的工作原理:電渦流傳感器使用場合和工作原理

  電渦流傳感器使用場合
  電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸的線性化計量工具。電渦流傳感器能準確測量被測體(必須是金屬導體)與探頭端面之間靜態和動態的相對位移變化。電渦流傳感器的原理是,通過電渦流效應的原理,準確測量被測體(必須是金屬導體)與探頭端面的相對位置,其特點是長期工作可靠性好、靈敏度高、抗干擾能力強、非接觸測量、響應速度快、不受油水等介質的影響,常被用于對大型旋轉機械的軸位移、軸振動、軸轉速等參數進行長期實時監測,可以分析出設備的工作狀況和故障原因,有效地對設備進行保護及預維修。
  電渦流傳感器系統以其獨特的優點,廣泛應用于電力、石油、化工、冶金等行業,對汽輪機、水輪機、發電機、鼓風機、壓縮機、齒輪箱等大型旋轉機械的軸的徑向振動、軸向位移、鑒相器、軸轉速、脹差、偏心、油膜厚度等進行在線測量和安全保護,以及轉子動力學研究和零件尺寸檢驗等方面。圖1-1列舉了上海航振儀器儀表有限公司的電渦流傳感器的一些典型應用示意。前置器根據探頭線圈阻抗的變化輸出一個與距離成正比的直流電壓。

  電渦流傳感器工作原理
  當接通傳感器系統電源時,在前置器內會產生一個高頻信號,該信號通過電纜送到探頭的頭部,在頭部周圍產生交變磁場H1。

  如果在磁場H1的范圍沒有金屬導體接近,則發射到這一范圍內的能量都會被釋放;反之,如果有金屬導體接近探頭頭部,則交變磁場H1將在導體的表面產生電渦流場,該電渦流場也會產生一個方向與H1相反的交變磁場H2。
  由于H2的反作用,就會改變探頭頭部線圈高頻電流的幅度和相位,即改變了線圈的有效阻抗。這種變化與電渦流效應有關,也與靜磁學效應有關(與金屬導體的電導率、磁導率、幾何形狀、線圈幾何參數、激勵電流頻率以及線圈到金屬導體的距離參數有關)。

  假定金屬導體是均質的,其性能是線形和各向同性的,則線圈——金屬導體系統的磁導率u、電導率σ、尺寸因子r、線圈與金屬導體距離δ線圈激勵電流I和頻率ω等參數來描述。因此線圈的阻抗可用函數Z=F(u,σ,r,δ,I,ω)來表示。
  如果控制u,σ,r,I,ω恒定不變,那么阻抗Z就成為距離的單值函數,由麥克斯韋爾公式,可以求得此函數為一非線形函數,其曲線為“S”型曲線,在一定范圍內可以近似為一線形函數。
  通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離δ的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。

  一般來說,傳感器線圈的阻抗、電感和品質因數的變化與導體的幾何形狀、導電率和磁導率有關。也與線圈的幾何參數、電流的頻率以及線圈到被測導體間距有關。
  如果控制上述參數中的一個參數改變,其余的不變,那么就可以構成測位移、測溫度、測硬度等的各種傳感器。

電渦流式傳感器的工作原理:電渦流傳感器  第2張

電渦流式傳感器的工作原理:電渦流傳感器的工作原理?

電渦流傳感器的工作原理:
根據法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內將產生呈渦旋狀的感應電流,此電流叫電渦流,以上現象稱為電渦流效應。而根據電渦流效應制成的傳感器稱為電渦流式傳感器。
電渦流傳感器系統以其獨特的優點,廣泛應用于電力、石油、冶金等行業,對汽輪機、水輪機、發電機、鼓風機、壓縮機、齒輪箱等大型旋轉機械的軸的徑向振動、軸向位移、鑒相器、軸轉速、脹差、偏心、油膜厚度等進行在線測量和安全保護。以及轉子動力學研究和零件尺寸檢驗等方面。
擴展資料:
渦流傳感器實驗基本原理是通過交變電流的線圈產生交變磁場,當金屬體處在交變磁場時,根據電磁感應原理,金屬體內產生電流,該電流在金屬體內自行閉合,關呈漩渦狀,故稱為渦流。
渦流的大小與金屬導體的電阻率、導磁率、厚度、線圈激磁電流頻率及線圈與金屬體表面的距離x等參數有關。電渦流的產生必然要消耗一部分磁場能量,從而改變磁線線圈阻抗,渦流傳感器就是基于這種渦流效應制成的。
電渦流工作在非接觸狀態(線圈與金屬體表面不接觸),當線圈與金屬以表面的距離x以外的所有參數一定時可以進行位移測量。
電渦流傳感器側測量方式:
位移的測量方式所涉及的范圍是相當廣泛的,一般來說小位移的測量通常有應變式、電感式、差動變壓式、渦流式、霍爾傳感器等方法來檢測,大的位移常用感應同步器、光柵、容柵、磁柵等傳感技術來測量,由于電磁測量方式能直接輸出電信號,方便轉化,易于控制,所以應用的最為廣泛。
電渦流傳感器就屬于電磁法的一種,結構簡單,動態響應好,靈敏度高,分辨率高,可實現非接觸測量受介質。與接觸式測量傳感器相比,非接觸測量的方法由于不接觸可以減少磨損。
與其他類型的位移傳感器相比較,電渦流位移傳感器具有長期工作可靠性好、測量范圍寬、靈敏度高、分辨率高、響應速度快、不受油污影響、結構簡單等優點。
參考資料來源:百度百科-電渦流傳感器

根據法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內將產生呈渦旋狀的感應電流,此電流叫電渦流,以上現象稱為電渦流效應。而根據電渦流效應制成的傳感器稱為電渦流式傳感器。
電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸的線性化計量工具。
擴展資料
電渦流傳感器的應用
電渦流傳感器系統以其獨特的優點,廣泛應用于電力、石油、化工等行業,對汽輪機、水輪機、發電機、鼓風機、壓縮機、齒輪箱等大型旋轉機械的軸的徑向振動、軸向位移、鑒相器、軸轉速、脹差、偏心、油膜厚度等進行在線測量和安全保護,以及轉子動力學研究和零件尺寸檢驗等方面。
其特點是長期工作可靠性好、靈敏度高、抗干擾能力強、非接觸測量、響應速度快、不受油水等介質的影響,常被用于對大型旋轉機械的軸位移、軸振動、軸轉速等參數進行長期實時監測。
參考資料來源:百度百科——電渦流傳感器

電渦流傳感器的工作原理
當接通傳感器系統電源時,在前置器內會產生一個高頻信號,該信號通過電纜送到探頭的頭部,在頭部周圍產生交變磁場H1。
如果在磁場H1的范圍沒有金屬導體接近,則發射到這一范圍內的能量都會被釋放;反之,如果有金屬導體接近探頭頭部,則交變磁場H1將在導體的表面產生電渦流場,該電渦流場也會產生一個方向與H1相反的交變磁場H2。
由于H2的反作用,就會改變探頭頭部線圈高頻電流的幅度和相位,即改變了線圈的有效阻抗。這種變化與電渦流效應有關,也與靜磁學效應有關(與金屬導體的電導率、磁導率、幾何形狀、線圈幾何參數、激勵電流頻率以及線圈到金屬導體的距離參數有關)。
假定金屬導體是均質的,其性能是線形和各向同性的,則線圈——金屬導體系統的磁導率u、電導率σ、尺寸因子r、線圈與金屬導體距離δ線圈激勵電流I和頻率ω等參數來描述。因此線圈的阻抗可用函數Z=F(u,σ,r,δ,I,ω)來表示。
如果控制u,σ,r,I,ω恒定不變,那么阻抗Z就成為距離的單值函數,由麥克斯韋爾公式,可以求得此函數為一非線形函數,其曲線為“S”型曲線,在一定范圍內可以近似為一線形函數。
通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離δ的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。
一般來說,傳感器線圈的阻抗、電感和品質因數的變化與導體的幾何形狀、導電率和磁導率有關。也與線圈的幾何參數、電流的頻率以及線圈到被測導體間距有關。
如果控制上述參數中的一個參數改變,其余的不變,那么就可以構成測位移、測溫度、測硬度等的各種傳感器。

當接通傳感器系統電源時,在前置器內會產生一個高頻信號,該信號通過電纜送到探頭的頭部,在頭部周圍產生交變磁場H1。如果在磁場H1的范圍沒有金屬導體接近,則發射到這一范圍內的能量都會被釋放;反之,如果有金屬導體接近探頭頭部,則交變磁場H1將在導體的表面產生電渦流場,該電渦流場也會產生一個方向與H1相反的交變磁場H2。
由于H2的反作用,就會改變探頭頭部線圈高頻電流的幅度和相位,即改變了線圈的有效阻抗。這種變化與電渦流效應有關,也與靜磁學效應有關(與金屬導體的電導率、磁導率、幾何形狀、線圈幾何參數、激勵電流頻率以及線圈到金屬導體的距離參數有關)。
假定金屬導體是均質的,其性能是線形和各向同性的,則線圈——金屬導體系統的磁導率u、電導率σ、尺寸因子r、線圈與金屬導體距離δ線圈激勵電流I和頻率ω等參數來描述。因此線圈的阻抗可用函數Z=F(u,σ,r,δ,I,ω)來表示。
如果控制u,σ,r,I,ω恒定不變,那么阻抗Z就成為距離的單值函數,由麥克斯韋爾公式,可以求得此函數為一非線形函數,其曲線為“S”型曲線,在一定范圍內可以近似為一線形函數。
通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離δ的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。
一般來說,傳感器線圈的阻抗、電感和品質因數的變化與導體的幾何形狀、導電率和磁導率有關。也與線圈的幾何參數、電流的頻率以及線圈到被測導體間距有關。
如果控制上述參數中的一個參數改變,其余的不變,那么就可以構成測位移、測溫度、測硬度等的各種傳感器。

電渦流傳感器簡介
概 述

HN800型電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸的線性化計量工具。電渦流傳感器能準確測量被測體(必須是金屬導體)與探頭端面之間靜態和動態的相對位移變化。
在高速旋轉機械和往復式運動機械的狀態分析,振動研究、分析測量中,對非接觸的高精度振動、位移信號,能連續準確地采集到轉子振動狀態的多種參數。如軸的徑向振動、振幅以及軸向位置。在所有與機械狀態有關的故障征兆中,機械振動測量是最具權威性的,這是因為它同時含有幅值、相位和頻率的信息。機械振動測量占有優勢的另一個原因是:它能反應出機械所有的損壞,并易于測量。從轉子動力學、軸承學的理論上分析,大型旋轉機械的運動狀態,主要取決于其核心—轉軸,而電渦流傳感器,能直接非接觸測量轉軸的狀態,對諸如轉子的不平衡、不對中、軸承磨損、軸裂紋及發生摩擦等機械問題的早期判定,可提供關鍵的信息。電渦流傳感器以其長期工作可靠性好、測量范圍寬、靈敏度高、分辨率高、響應速度快、抗干擾力強、不受油污等介質的影響、結構簡單等優點,在大型旋轉機械狀態的在線監測與故障診斷中得到廣泛應用。
探頭、(延伸電纜)、前置器以及被測體構成基本工作系統。前置器中高頻振蕩電流通過延伸電纜流入探頭線圈,在探頭頭部的線圈中產生交變的磁場。如果在這一交變磁場的有效范圍內沒有金屬材料靠近,則這一磁場能量會全部損失;當有被測金屬體靠近這一磁場,則在此金屬表面產生感應電流,電磁學上稱之為電渦流。與此同時該電渦流場也產生一個方向與頭部線圈方向相反的交變磁場,由于其反作用,使頭部線圈高頻電流的幅度和相位得到改變(線圈的有效阻抗),這一變化與金屬體磁導率、電導率、線圈的幾何形狀、幾何尺寸、電流頻率以及頭部線圈到金屬導體表面的距離等參數有關。通常假定金屬導體材質均勻且性能是線性和各項同性,則線圈和金屬導體系統的物理性質可由金屬導體的電導率б、磁導率ξ、尺寸因子τ、頭部體線圈與金屬導體表面的距離D、電流強度I和頻率ω參數來描述。則線圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函數來表示。通常我們能做到控制τ, ξ, б, I, ω這幾個參數在一定范圍內不變,則線圈的特征阻抗Z就成為距離D的單值函數,雖然它整個函數是一非線性的,其函數特征為“S”型曲線,但可以選取它近似為線性的一段。于此,通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離D的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。其工作過程是:當被測金屬與探頭之間的距離發生變化時,探頭中線圈的Q值也發生變化,Q值的變化引起振蕩電壓幅度的變化,而這個隨距離變化的振蕩電壓經過檢波、濾波、線性補償、放大歸一處理轉化成電壓(電流)變化,最終完成機械位移(間隙)轉換成電壓(電流)。由上所述,電渦流傳感器工作系統中被測體可看作傳感器系統的一半,即一個電渦流位移傳感器的性能與被測體有關。

電渦流式傳感器的工作原理:電渦流式傳感器的結構和工作原理

當導體置于交變磁場或在磁場中運動時,導體上引起感生電流ie,此電流在導體內閉合,稱為渦流。渦流大小與導體電阻率" title="電阻率">電阻率ρ、磁導率μ以及產生交變磁場的線圈與被測體之間距離x,線圈激勵電流的頻率f有關。顯然磁場變化頻率愈高,渦流的集膚效應愈顯著。即渦流穿透深度愈小,其穿透深度h可表示
ρ—導體電阻率(ω·cm);
μr—導體相對磁導率;
f—交變磁場頻率(Hz)。
可見,渦流穿透深度h和激勵電流頻率f有關,所以渦流傳感器根據激勵頻率:高頻反射式" title="反射式">反射式或低頻透射式兩類。
目前高頻反射式電渦流傳感器應用廣泛。
(一) 結構和工作原理" title="工作原理">工作原理
主要由一個安置在框架上的扁平圓形線圈構成。此線圈可以粘貼于框架上,或在框架上開一條槽溝,將導線繞在槽內。下圖為CZF1型渦流傳感器的結構原理,它采取將導線繞在聚四氟乙烯框架窄槽內,形成線圈的結構方式。

1 線圈 2 框架 3 襯套
4 支架 5 電纜 6 插頭
傳感器線圈由高頻信號" title="高頻信號">高頻信號激勵,使它產生一個高頻交變磁場φi,當被測導體靠近線圈時,在磁場作用范圍的導體表層,產生了與此磁場相交鏈的電渦流ie,而此電渦流又將產生一交變磁場φe阻礙外磁場的變化。從能量角度來看,在被測導體內存在著電渦流損耗(當頻率較高時,忽略磁損耗)。能量損耗使傳感器的Q值和等效阻抗Z降低,因此當被測體與傳感器間的距離d改變時,傳感器的Q值和等效阻抗Z、電感L均發生變化,于是把位移量轉換成電量。這便是電渦流傳感器的基本原理。

電渦流傳感器原理圖

您可能感興趣的文章

本文地址:http://www.marisaherron.com/50778.html
文章標簽: ,   ,  
版權聲明:本文為原創文章,版權歸 ceomba 所有,歡迎分享本文,轉載請保留出處!

文件下載

老薛主機終身7折優惠碼boke112

上一篇:
下一篇:

評論已關閉!